Corso di Laurea in Ingegneria delle Telecomunicazioni Sistemi di Elaborazione-23 settembre 2003

Esercizio 1.				
Si progetti il grafo degli stati di una macchina sequenziale che accetti 3 possibili stati d'ingresso,				
A, B e C, e tale che l'uscita della macchina valga 1 ogni volta che si è presentata una delle				
sequenze AB ⁿ C ^m oppure CB ⁿ A ^m , con n≥0 e m>0, 0 altrimenti.				
Esercizio 2. Si consideri un bus semisincrono del tipo visto a lezione dotato di 16 linee per il trasferimento dei dati ed operante ad una frequenza di 50MHz. Si supponga che 1000 byte debbano essere trasferiti (a due alla volta) fra due slave: il processore (master) legge 2 byte dal primo slave e li scrive sul secondo. Le operazioni di lettura e scrittura hanno le seguenti caratteristiche: • Lettura: Il master genera gli indirizzi con un ritardo Tad<=3ns; Tds>=2ns; il primo slave e' in grado di rispondere in 60ns a partire dall'istante in cui vengono presentati gli indirizzi; • Scrittura: Il master genera gli indirizzi con un ritardo Tad<=3ns; il master mantiene dati e indirizzi sul bus per 110ns Quanto tempo e' necessario per trasferire i dati se nessun ciclo di clock viene sprecato tra le operazioni di lettura e scrittura?				

Esercizio 3.				
Si definisca il microprogramma di un sistema Mo-Mo in grado di eseguire le seguenti operazioni :				
$0: (2 \text{ A})^2 \mod N \rightarrow A$				
,	$1: (A*M) \to B.$			
Si considerino N>0 ed M dati esterni in complemento a 2.				
Esercizio 4.				
			i un byte e memorizzata per righe, a partire	
dall'indirizzo	-		matrice dal seguente frammento di programma?	
	MOVB CL,\$1	esercizio:	MOVW AX,(EBX)	
	MOVL EBX,\$100		MOVB (EBX),AH	
ciclo_r:	CMPB CL,\$10 JG fine		INCB EBX MOVB (EBX),AL	
	MOVB CH, \$1		RET	
ciclo_c:	CMPB CH, \$10		ND1	
_	JE step			
	CALL esercizio			
	INCB CH			
.4	JMP ciclo_c			
step:	INCL EBX INCB CL			
	JMP ciclo_r			
fine:				